АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ НОВЫЙ УНИВЕРСИТЕТ» (АНО ВО «РОССИЙСКИЙ НОВЫЙ УНИВЕРСИТЕТ»)

институт Информационных систем и инженерно-компьютерных технологий

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ для оценки результатов освоения учебной дисциплины

ЕН.01 Математика

для специальности

09.02.07 Информационные системы и программирование

1. Паспорт комплекта контрольно - оценочных средств дисциплины Математика

Комплект контрольно-оценочных средств для проведения текущего контроля и промежуточной аттестации по дисциплине «Математика» разработан в соответствии с рабочей программой учебной дисциплины «Математика».

Комплект контрольно-оценочных средств разработан на основании:

- ▶ основной образовательной программы по направлению подготовки специальности СПО 09.02.07 Информационные системы и программирование
 - программы учебной дисциплины «Математика».

2. Результаты освоения учебной дисциплины

В результате освоения учебной дисциплины обучающийся должен обладать общими компетенциями, включающими в себя способность:

- ОК 1. Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам.
- OК 2. Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности.

Результатом освоения дисциплины является получение (освоение) знаний и умений

Результаты обучения (освоенные умения, усвоенные знания)	Показатели оценки результата
Умения:	
выполнять операции над матрицами и решать системы линейных уравнений;	- выполнение действий над матрицами: сложение, вычитание, умножение, умножение матрицы на число -вычисление определителей - решение систем линейных уравнений методом обратной матрицы - решение систем линейных уравнений по формулам Крамера - решение систем линейных уравнений методом Гаусса
решать задачи, используя уравнения прямых и кривых второго порядка на плоскости;	- выполнение действий над векторами: сложение и вычитание векторов, умножение вектора на число - нахождение скалярного, векторного и смешанного произведения векторов - составление уравнений прямых и кривых 2 порядка, их построение
применять методы дифференциального и интегрального исчисления;	-вычисление предела функции в точке и в бесконечности - исследование функции на непрерывность в точке

	 нахождение производной функции нахождение производной сложной функции вычисление производной неявной функции; логарифмическое дифференцирование; производная функции, заданной параметрически; исследование функции с помощью производной; нахождение неопределенных интегралов; вычисление определенных интегралов; нахождение частных производных функции двух переменных;
решать дифференциальные уравнения;	-решение дифференциальных уравнений первого и второго порядка
пользоваться понятиями теории комплексных чисел;	- производить действия с комплексными числами в алгебраической, тригонометрической, показательной формах; - осуществлять геометрическую интерпретацию комплексного числа; -переводить комплексные числа из одной формы в другую;
Знания:	
основы математического анализа, линейной алгебры и аналитической геометрии;	- воспроизводить алгоритмы решения систем линейных уравнений методом обратной матрицы, по формулам Крамера, методом Гаусса - воспроизводить Скалярное, векторное и смешанное произведения векторов - определять уравнения кривых второго порядка
основы дифференциального и интегрального исчисления;	- воспроизводить методы вычисления пределов, замечательные пределы; - классифицировать точки разрыва функции; - воспроизводить правила дифференцирования и производные основных элементарных функций; - воспроизводить правила дифференцирования функции двух переменных; - называть табличные интегралы; решать интегралы методом замены переменной, интегрированием по частям; -использовать приложение определенного интеграла

основы теории комплексных чисел	- представлять комплексного числа в алгебраической, тригонометрической, показательной формах, выполнять действия в них.
	A

3. Оценка освоения учебной дисциплины

3.1. Формы контроля и оценивания элементов учебной дисциплины

Элемент учебной	Формы контроля и оценивания		
элемент учеоной дисциплины	Текущий контроль	Тематический контроль	Промежуточн ый контроль
Раздел 1. Линейная и векторная алгебра.	Опрос, тестирование, самостоятельная работа	Проверочная работа	
Раздел 2. Элементы аналитической геометрии.	Опрос, тестирование, самостоятельная работа	Контрольная/ проверочная работа	
Раздел 3. Основы математического анализа	Опрос, тестирование, самостоятельная работа	Контрольная / проверочная работа	
Раздел 4. Основы теории комплексных чисел. Итог	Опрос, тестирование, самостоятельная работа	Контрольная/ проверочная работа	Комплексный
1101			экзамен

Типы заданий для текущего контроля и критерии оценки

Предметом оценки освоения дисциплины являются умения, знания, общие компетенции, способность применять их в практической деятельности и повседневной жизни.

№	Тип (вид) задания	Проверяемые знания и умения	Критерии оценки
1	Тесты	Знание основ высшей математики	«5» - 100 — 90% правильных ответов «4» - 89 - 70% правильных ответов «3» - 69 — 50% правильных ответов «2» - 49% и менее правильных ответов
2	Устные ответы	Знание основ высшей математики	Устные ответы на вопросы должны соответствовать критериям оценивания устных ответов.
3	Контрольная/про верочная (самостоятельна я) работа	Знание элементов высшей математики в соответствии с пройденной темой и умения применять знания на практике	«5» - 100 — 90% правильных ответов «4» - 89 - 70% правильных ответов «3» - 69 — 50% правильных ответов «2» - 49% и менее правильных ответов
4	Составление конспектов.	Умение ориентироваться в информационном пространстве, составлять конспект.	Соответствие содержания работы, заявленной теме.
	Практические работы	Умение применять полученные знания на практике.	«5» - 100 – 90% правильных ответов «4» - 89 - 70% правильных ответов «3» - 69 – 50% правильных ответов «2» - 49% и менее правильных ответов

3.2. Типовые задания для оценки усвоения учебной дисциплины.

3. 2. 1. Задания для текущего контроля по дисциплине Математика

a)
$$\begin{pmatrix} 24 & 10 \\ -12 & -30 \end{pmatrix}$$
 b) $\begin{pmatrix} 20 & 5 \\ -10 & -15 \end{pmatrix}$ c) $\begin{pmatrix} -2 & -3 \\ -20 & 5 \\ -10 & -3 \end{pmatrix}$

Тест по теме «Линейная алгебра»

Если матрица $A = \begin{pmatrix} 4 & 1 \\ -2 & -3 \end{pmatrix}$, то матрица 5A имеет вид:

а) $\begin{pmatrix} 24 & 10 \\ -12 & -30 \end{pmatrix}$ b) $\begin{pmatrix} 20 & 5 \\ -10 & -15 \end{pmatrix}$ $\begin{pmatrix} -20 & 5 \\ -10 & -3 \end{pmatrix}$ 1. Если матрицы $A = \begin{pmatrix} 3 & 1 & 2 \\ -4 & 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 2 & 1 & -1 \\ 5 & 2 & -3 \end{pmatrix}$, то матрица 2A + B имеет вид: $\begin{pmatrix} 4 & 1 & 2 \\ -4 & 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 4 & 1 & 7 \\ -4 & 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 4 &$

2. Для матрицы $A = \begin{pmatrix} 4 & 1 & 7 \\ 9 & 2 & 5 \\ -3 & 4 & 2 \end{pmatrix}$ указать сумму элементов, расположенных на

главной диагонали

3. Для матрицы $A = \begin{pmatrix} 4 & 1 & 7 \\ 9 & 2 & 5 \\ -3 & 4 & 2 \end{pmatrix}$ указать сумму элементов, расположенных на

побочной диагонали

- 5. При умножении матрицы A на матрицу B должно соблюдаться условие:
 - а) число строк матрицы A равно числу строк матрицы B
 - b) число строк матрицы A равно числу столбцов матрицы B
 - с) число столбцов матрицы A равно числу строк матрицы B
- 6. Квадратная матрица называется диагональной, если:
 - а) элементы, лежащие на главной диагонали равны нулю
 - b) элементы, не лежащие на главной диагонали равны нулю
 - а) элементы, лежащие на побочной диагонали равны нулю
- 7. При каком значении α определитель $\begin{vmatrix} 1 & 7 & 3 \\ 0 & 4 & 2 \\ 0 & 0 & 2\alpha 1 \end{vmatrix}$ равен нулю?

$$a(a)(2b)(12c) - 2$$

- 8. Если поменять местами две строки (два столбца) квадратной матрицы, то определитель:
 - а) не изменится
 - *b)* станет равным нулю
 - с) поменяет знак

9. Чему равен минор
$$M_{21}$$
 определителя $\begin{vmatrix} -1 & 2 & 0 \\ 3 & 7 & -1 \\ 5 & 4 & 2 \end{vmatrix}$?

10. Чему равен минор
$$M_{31}$$
 определителя $\begin{vmatrix} -1 & 2 & 0 \\ 3 & 7 & -1 \\ 5 & 4 & 2 \end{vmatrix}$?

а) 4 b) -2 с) 0

11. Чему равно алгебраическое дополнение
$$A_{21}$$
 определителя $\begin{bmatrix} -1 & 2 & 0 \\ 3 & 7 & -1 \\ 5 & 4 & 2 \end{bmatrix}$?

12. Чему равно алгебраическое дополнение
$$A_{31}$$
 определителя $\begin{vmatrix} -1 & 2 & 0 \\ 3 & 7 & -1 \\ 5 & 4 & 2 \end{vmatrix}$?

а) 4 b) -2 c) 0

13. Чему равен главный определитель системы уравнений
$$\begin{cases} 3x - y = 5 \\ -2x + y + z = 0 \\ 2x - y + 4z = 15 \end{cases}$$

14. Если матрицы
$$A = \begin{pmatrix} 2 & 0 \\ 3 & -4 \end{pmatrix}$$
 и $D = \begin{pmatrix} 1 & 2 \\ -2 & 0 \end{pmatrix}$, то определитель матрицы $A \cdot D$ равен: a) -32 b) 32 c) -16

15. Найти минор для элемента
$$a_{23}$$
 определителя $\Delta = \begin{bmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{bmatrix}$

16. Найти алгебраическое дополнение для элемента
$$a_{23}$$
 определителя $\Delta = \begin{bmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{bmatrix}$

$$a) -8$$

Самостоятельная работа

Вариант 1

1. Найти матрицу
$$C=A+3B$$
, если $A=\begin{pmatrix}2&3&0\\-2&1&8\\2&4&3\end{pmatrix}$, $B=\begin{pmatrix}-1&0&3\\2&4&1\\1&3&0\end{pmatrix}$.

OTBET:
$$C = \begin{pmatrix} -1 & 3 & 9 \\ 4 & 13 & 11 \\ 5 & 13 & 3 \end{pmatrix}$$

- 2. Решить систему линейных уравнений методом обратной матрицы.
- 3. Решить систему линейных уравнений по формулам Крамера.
- 4. Решить систему линейных уравнений методом Гаусса.

$$\begin{cases} x_1 + 2x_2 - x_3 = 1, \\ 2x - x + x = 5, \\ 3x^{1} + 2x^{2} + x^{3} = 7. \end{cases}$$

Ответ: (2;0;1)

Вариант 2

1. Найти матрицу
$$C=2A-B$$
, если $A=\begin{pmatrix}2&3&0\\-2&1&8\\2&4&3\end{pmatrix},\ B=\begin{pmatrix}-1&0&3\\2&4&1\\1&3&0\end{pmatrix}.$

OTBET:
$$C = \begin{pmatrix} 5 & 6 & -3 \\ -6 & -2 & 15 \\ 3 & 5 & 6 \end{pmatrix}$$

- 2. Решить систему линейных уравнений методом обратной матрицы.
- 3. Решить систему линейных уравнений по формулам Крамера.
- 4. Решить систему линейных уравнений методом Гаусса.

$$\begin{cases} x_1 - x_2 + 2x_3 = -2, \\ x + 2x - x = 7, \\ 2x + x^2 - 3x^3 = 5, \\ 1 & 2 & 3 \end{cases}$$

Ответ: (1;3;0)

Вариант 3

1. Найти матрицу
$$C=3A+B$$
, если $A=\begin{pmatrix}2&3&0\\-2&1&8\\2&4&3\end{pmatrix},\ B=\begin{pmatrix}-1&0&3\\2&4&1\\1&3&0\end{pmatrix}.$

Otbet:
$$C = \begin{pmatrix} 5 & 9 & 3 \\ -4 & 7 & 25 \\ 7 & 15 & 9 \end{pmatrix}$$

- 2. Решить систему линейных уравнений методом обратной матрицы.
- 3. Решить систему линейных уравнений по формулам Крамера.
- 4. Решить систему линейных уравнений методом Гаусса.

$$\begin{cases} x_1 + 3x_2 - 2x_3 = 4, \\ x + 4x - x = 7, \\ 2x + x^2 + x^3 = 3. \\ 1 & 2 & 3 \end{cases}$$

Ответ: (0;2;1)

Вариант 4

1. Найти матрицу
$$C=A-4B$$
, если $A=\begin{pmatrix}2&3&0\\-2&1&8\\2&4&3\end{pmatrix},\ B=\begin{pmatrix}-1&0&3\\2&4&1\\1&3&0\end{pmatrix}.$

OTBET:
$$C = \begin{pmatrix} 6 & 3 & -12 \\ -10 & -15 & 4 \\ -2 & -8 & 3 \end{pmatrix}$$

- 2. Решить систему линейных уравнений методом обратной матрицы.
- 3. Решить систему линейных уравнений по формулам Крамера.
- 4. Решить систему линейных уравнений методом Гаусса.

$$\begin{cases} x_1 + 2x_2 - x_3 = 3, \\ x + 3x + x = 6, \\ 2x - x^2 + x^3 = 4. \\ 1 & 2 & 3 \end{cases}$$

Ответ: (2;1;1)

Вариант 5

1. Найти матрицу
$$C=4A-B$$
, если $A = \begin{pmatrix} 2 & 3 & 0 \\ -2 & 1 & 8 \\ 2 & 4 & 3 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 & 3 \\ 2 & 4 & 1 \\ 1 & 3 & 0 \end{pmatrix}$.

Otbet:
$$C = \begin{pmatrix} 9 & 12 & -3 \\ -10 & 0 & 31 \\ 7 & 13 & 12 \end{pmatrix}$$

- 2. Решить систему линейных уравнений методом обратной матрицы.
- 3. Решить систему линейных уравнений по формулам Крамера.
- 4. Решить систему линейных уравнений методом Гаусса.

$$\begin{cases} x_1 + x_2 - 3x_3 = 2, \\ x_1 + 2x_2 + x_3 = 3, \\ 3x + 7x^2 + x = 10, \\ 1 & 2 & 3 \end{cases}$$

Ответ: (1;1;0)

Вариант 6

1. Найти матрицу
$$C=A+2B$$
, если $A=\begin{pmatrix}2&3&0\\-2&1&8\\2&4&3\end{pmatrix},\ B=\begin{pmatrix}-1&0&3\\2&4&1\\1&3&0\end{pmatrix}.$

Otbet:
$$C = \begin{pmatrix} 0 & 3 & 6 \\ 2 & 9 & 10 \\ 4 & 10 & 3 \end{pmatrix}$$

- 2. Решить систему линейных уравнений методом обратной матрицы.
- 3. Решить систему линейных уравнений по формулам Крамера.
- 4. Решить систему линейных уравнений методом Гаусса.

$$\begin{cases} x_1 + x_2 + x_3 = 3, \\ 2x - x + x = 1, \\ 2x^{1} + 3x^{2} - x^{3} = 1. \end{cases}$$

Ответ: (0;1;2)

Тест по теме «Векторная алгебра»

- 1. Даны векторы a = (2,4,1) и c = (1,2,0). Найти координаты суммы векторов.
- a) (3;6;1) b) (0;6;1) c) (1;2;1)
 - 2. Даны векторы a = (2, 4, 1) и c = (1, 2, 0). Найти координаты разности векторов.
- a) (3;6;1) b) (0;6;1) c) (1;2;1)
 - 3. Даны векторы a = (2;4;1) u c = (1;2;0). Найти координаты вектора a + 2c
- a) (-3;8;1) b) (4;8;1) c) (1;2;1)
 - 4. Найти координаты вектора AB, если A(2; 4; -6) и B(2; -4; 8)
- a) (0; -4; 7) b) (2; -4; 2) c) (0; 4; -7)
- 5. Найти длину вектора $a \left(-1; 2; -2\right)$ 4 b) 3 c) 1
- - 6. Найти длину вектора AB, если A(5;3;1) и B(4;5;-1)
- <u>a) 3</u> b) 2
 - 7. Условие коллинеарности векторов $a(x_1; y_1; z_1)_{\mathsf{H}} b(x_2; y_2; z_2)_{\mathsf{HMECT BU}}$
- a) $x_1x_2 + y_1y_2 + z_1z_2 = 0$ b) $x_1x_2 = y_1y_2 = z_1z_2$ c) $\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2} = m$
 - 8. Укажите вектор, коллинеарный вектору a(2; -3; -1)
- a) b(6; -9; -3)
- b) b(8; 12; -4) c) b(-4; 6; -2)
- 9. Найти скалярное произведение векторов a(4; -3; 1) и b(5; -2; -3)
- - 10. Найти координаты вектора a = -i + 3j + 5k
- a) (1; -3; -5) b) (-1; -3; 5) c) (-1; 3; 5)
 - 11. Условие перпендикулярности векторов $a(x_1; y_1; z_1)$ и $b(x_2; y_2; z_2)$ имеет вид:
- <u>a)</u> $x_1x_2 + y_1y_2 + z_1z_2 = 0$ b) $x_1x_2 = y_1y_2 = z_1z_2$ c) $\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2} = m$
 - 12. При каком значении m векторы a(1;3;-2) и b(-1;m;4) векторы перпендикулярны?
- a) 5 b) 3 c) -3
- a)(1;5;-1) b)(5;-1;-9)c)(-1;3;5)

a)
$$(1; 5; -1)$$
b) $(5; -1; -9)$ c) $(-1; 3; 5)$

Самостоятельная работа

Вариант 1

Даны векторы a(9;-2;1) и b(4;3;0) (для № 1-5).

- Найти $(ab) \cdot (Omsem: 24)_{24}$ Найти $(ab) \cdot Othet:$
- Найти a^{ρ_2} .(Ответ: 86)
- Найти b .(Ответ: 5) Найти координаты векторов $\rho = \rho + d \rho b$, $f = -\rho$. (Ответ:

$$c(13;1;1), d(5;-5;1), f(-27;6,0)$$

6. В прямоугольной декартовой системе координат построить точки A (0; 0), В (3; -4), С (-3; 4). Определить расстояние между точками А и В, В и С, А и С.(Ответ: |AB| = 5, |BC| = 10, |AC| = 5)

Вариант 2

Даны векторы a(-3;2;1) и b(3;0;4) (для № 1-5).

- 1. Найти *a · b .(Ответ:-5)*
- Найти $(a \wedge b)(Omsem: -\frac{1}{\sqrt{14}})$
- 3. Найти a^{ρ_2} .(Ответ: 14)
- 4. Найти *b* .(*Omsem: 5*)
- векторов $\mathcal{E} = \overset{\rho}{a} + b$, $d = \overset{\rho}{a} b$, $f = -\overset{\rho}{3}a$.(Ответ: 5. Найти координаты c(0;2;5), d(-6;2;-3), f(9;-6,-3)
- 6. В прямоугольной декартовой системе координат построить точки A (0; 0), C (-3; 4), D (-2; 2) E (10; -3). Определить расстояние между точками C и D, A и D, D и E... $(Omsem: |CD| = \sqrt{5}, |AD| = 2\sqrt{2}, |DE| = 13)$

Самостоятельная работа

Вариант 1

1. Вычислить предел функции:
$$\lim_{x\to 3} \frac{x^2-9}{x^2-8x+15} \, .$$

2. Вычислить предел функции:

$$\lim_{x\to 2}\frac{x+5}{3x-6}.$$

3. Вычислить предел функции:

$$\lim_{x \to 0} \frac{\sin 17x}{\sin 12x}$$

4. Вычислить предел функции:

$$\lim_{x \to \infty} \left(1 + \frac{7}{x} \right)^{\frac{3}{x}}$$

Вариант 2

1. Вычислить предел функции:
$$\lim_{x\to 4} \frac{x^2+x-20}{x^2-16}.$$

2. Вычислить предел функции:

$$\lim_{x\to 2}\frac{3x+6}{2x-4}.$$

3. Вычислить предел функции:

$$\lim_{x \to 0} \frac{\sin 7x}{\sin 13x}$$

4. Вычислить предел функции:

$$\lim_{x\to\infty} \left(1 + \frac{12}{x}\right)^{\frac{x}{4}}.$$

Вариант 3

1. Вычислить предел функции:
$$\lim_{x \to 7} \frac{x^2 - 49}{x^2 - 5x - 14}.$$

2. Вычислить предел функции:

$$\lim_{x \to 3} \frac{x^2 + 4}{2x - 6}$$

3. Вычислить предел функции:

$$\lim_{x \to 0} \frac{\sin 9x}{\sin 4x}$$

4. Вычислить предел функции:

$$\lim_{x\to\infty} \left(1 + \frac{15}{x}\right)^{\frac{x}{5}}.$$

Вариант 4

1. Вычислить предел функции:
$$\lim_{x\to 5} \frac{x^2-12x+35}{x^2-25} \, .$$

2. Вычислить предел функции:
$$\lim_{x\to 5} \frac{x^2-1}{2x-10} \, .$$

3. Вычислить предел функции:

$$\lim_{x\to 0} \frac{\sin 8x}{\sin 19x}.$$

4. Вычислить предел функции:

$$\lim_{x \to \infty} \left(1 + \frac{4}{x} \right)^{2x}.$$

Вариант 5

1. Вычислить предел функции:
$$\lim_{x\to 6} \frac{x^2-3x-18}{x^2-36}.$$

2. Вычислить предел функции:
$$\lim_{x\to 4} \frac{2x-3}{3x-12}$$
.

3. Вычислить предел функции:
$$\lim_{x\to 0} \frac{\sin 5x}{\sin 14x}$$
.

4. Вычислить предел функции:

$$\lim_{x \to \infty} \left(1 + \frac{10}{x} \right)^{3x}.$$

Вариант 6

1. Вычислить предел функции:
$$\lim_{x\to 9} \frac{x^2-81}{x^2-11x+18} \, .$$

2. Вычислить предел функции:

$$\lim_{x\to 6}\frac{3x-5}{2x-12}.$$

3. Вычислить предел функции:

$$\lim_{x\to 0} \frac{\sin 19x}{\sin 3x}.$$

4. Вычислить предел функции:
$$\lim_{x\to\infty} \left(1 + \frac{14}{x}\right)^{2x}.$$

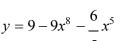
Тест по теме «Производные функций» $y = \frac{1}{x^2} x^2 - 2x + 4$ 1. Найти y - 1, если 2

$$y = \frac{1}{x^2} x^2 - 2x + 4$$

a)
$$y'(-1)=1$$
 b) $y'(-1)=-3$ c) $y'(-1)=$

2. Найти
$$y$$
 (1), если $y = \frac{1}{x^4}$

a)
$$y'(1) = -4$$
 b) $y'(1) = 3$ c) $y'(1) = 4$


1. Найти
$$y - 1$$
, если $z = 0$ $y'(-1) = 1$ $z = 0$ $y'(-1) = -3$ $z = 0$ z

a)
$$(u \cdot v)' = u' \cdot v'$$
 b) $(u \cdot v)' = u' \cdot v + v' \cdot u$ c) $(u \cdot v)' = \frac{u' \cdot v - v' \cdot u}{v^2}$

5. Найти производную функции $f(x) = x^3 + 5x$

5. Найти производную функции
$$f(x) = x + x$$

a) $4x^5-1$ b) $3x^2+5$ c) 0

6. Найти угловой коэффициент касательной к оси ОХ функции $y = 3x^2 + x$; $\epsilon mouke x_0 = 2$

$$y = 9 - 9x^8 - \frac{6}{5}x^5$$
7. Найдите производную функции 5 .
$$a) \ y' = 9x - x^9 - \frac{1}{5}x^6; b) \ y' = 9x - 72x^7 - 5x^4; \ c) \ y' = -72x^7 - 6x^4;$$

8. Точка х0 называется точкой минимума функции f(x), если для всех х из некоторой окрестности х0 выполняется условие

a)
$$f(x_0) \ge f(x)$$

a)
$$f(x_0) \ge f(x)$$
 b) $f(x_0) = f(x)$ c) $f(x_0) \le f(x)$

$$c) f(x_0) \le f(x)$$

9. Найти производную функции $y = \sin(3x + 1)$

a)
$$y' = \cos(3x+1)$$
 b) $y' = 3\cos x$

b)
$$y' = 3\cos x$$

$$c) y' = 3\cos(3x+1)$$

$$y = \frac{9x}{4}$$

 $y = \frac{-7x - 3\cos(3x+1)}{y = \frac{9x}{4-x}}$ 10. Найти вертикальные асимптоты функции $y = \frac{9x}{4-x}$ 11. Уравнечиства a) -5 <u>b) 4</u> c) 2
 11. Уравнение касательной к графику функции имеет вид:

a)
$$y-y_0=y'(x_0)(x-x_0)$$

a)
$$y-y_0=y'(x_0)(x-x_0)$$
 b) $y+y_0=y'(x_0)(x-x_0)$ c) $y-y_0=-y'(x_0)(x-x_0)$

c)
$$y-y_0 = -y'(x_0)(x-x_0)$$

12. Найти производную функции $y=x^2\cdot\sqrt{x}\cdot x^{1,5}$ a) $3x^2$ b) $5x^4$ c) $4x^3$

a)
$$3x^{2}$$

b)
$$5x^4$$

c)
$$4x^{3}$$

13. Производная функции $y = \sin u$ вычисляется по формуле:

a)
$$v' = \cos u \cdot u'$$

a)
$$y'=\cos u \cdot u'$$
 b) $y'=-\cos u \cdot u'$ c) $y'=\cos u \cdot u'$

c)
$$y'=\cos u$$

14. Производная функции $y = \cos u$ вычисляется по формуле:

a)
$$y'=\sin u \cdot u'$$

b)
$$y' = -\sin u \cdot u'$$
 c) $y' = -\sin u$

c)
$$y' = -\sin u$$

15. Если в некотором промежутке f'(x) > 0, то функция:

а) Убывает b) Возрастает c) Пересекает ось ОХ

16. Если в некотором промежутке f'(x) < 0, то функция:

а) Убывает b) Возрастает c) Пересекает ось ОХ

17. Н айти производную функции $y = \sqrt{1-x^2}$

a)
$$y' = \frac{2x}{\sqrt{1-x^2}}$$
 b) $y' = -\frac{2x}{\sqrt{1-x^2}}$ c) $y' = -\frac{x}{\sqrt{1-x^2}}$

18. Критические (стационарные) точки – это точки, в которых

- а) производная обращается в нуль или терпит разрыв;
- b) производная не существует;
- с) производная отрицательна.

19. Найти производную функции $y = x + \ln x$ в точке $x_0 = 1$

a) 1

$$\vec{b}$$
) 0

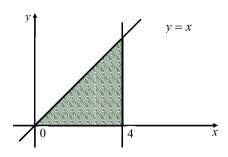
Тест по теме «Интегрирование»

Найти интеграл $\int_{x-5}^{\underline{dx}}$ 1.

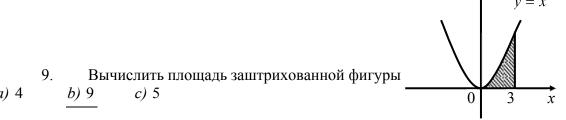
a)
$$\ln(x-5) + C$$

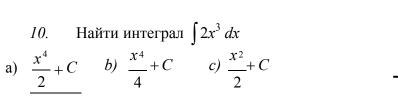
b)
$$\sin(x-5) + C$$
 c) $\cos(x-5) + C$

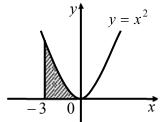
c)
$$\cos(x-5) + 6$$


 $\frac{1}{1}$ Найти интеграл $\int \cos 6x dx$ 2.

a)
$$-6\sin 6x + C$$
 b) $\frac{1}{6}\sin 6x + C$ c) $-\frac{1}{6}\sin 6x + C$


- Формула интегрирования по частям имеет вид:
 - a) $\int u dv = uv \int v du$ b) $\int u dv = \int v du + uv$ c) $\int u dv = uv$
- Площадь криволинейной трапеции определяется по формуле:


a)
$$S = \int_{a}^{b} f(x)dx = F(b) + F(a)$$
; b) $S = \int_{a}^{b} f(x)dx = F(b) - F(a)$; c)
$$S = \int_{a}^{b} f(x)dx = F(a) - F(b)$$


- 5. Найти интеграл $\int_{3}^{5} dx$
 - b) -2 a)4
- c) 2
- Найти интеграл $\int_0^1 (2x+1) dx$ a) $\frac{2}{}$ b) 4 c) 1
- 7. Вычислить площадь заштрихованной фигуры b) 8 c) 5 *a*) 4

- 8. Вычислить площадь заштрихованной фигуры $a)\ 4$ $b)\ 8$ $c)\ 9$

- Найти интеграл $\int 3\sin 3x \, dx$
- b) $-\cos 3x + C$ c) $\cos 3x + C$ a) $\cos x + C$
 - Найти интеграл \int −3 sin 3*x* d*x 12*.

a)
$$\cos x + C$$
 b) $-\cos 3x + C$ c) $\cos 3x + C$

13. Найти интеграл
$$\int 6 \cos 6x dx$$

a)
$$-6\sin 6x + C$$
 b) $\frac{\sin 6x + C}{\sin 6x + C}$ c) $-\frac{1}{6}\sin 6x + C$

Самостоятельная работа по теме «Комплексные числа»

Каждый выполняет свой вариант (номер по журналу)

1. Даны два комплексных числа. Вычислить сумму $z=z_1+z_2$, изобразить графически полученное число z. Найти модуль и аргумент z, a так же z_1-z_2 ; $z_1\cdot z_2$; z_2

1.
$$z_1 = 5 - i$$
; $z_2 = 1 + 3i$

2.
$$z_1 = 3 - 4i$$
; $z_2 = 1 + i$

3.
$$z_1 = 1 - 5i$$
; $z_2 = 1 + 4i$

4.
$$z_1 = 1 + 3i$$
; $z_2 = 7 - i$

5.
$$z_1 = 1 - i$$
; $z_2 = 7 + 3i$

6.
$$z_1 = 1 - i$$
; $z_2 = 5 - 4i$

7.
$$z_1 = 3 + 4i$$
; $z_2 = -2 + i$

8.
$$z_1 = -i$$
; $z_2 = 7 + 4i$

9.
$$z_1 = 6 - 5i$$
; $z_2 = 1 + i$

10.
$$z_1 = -1 + 5i$$
; $z_2 = 2 - 5i$

11.
$$z_1 = 5 - 7i$$
; $z_2 = 1 - 3i$

12.
$$z_1 = -3 - 2i$$
; $z_2 = -1 + 7i$

13.
$$z_1 = 5 + 2i$$
; $z_2 = 2 - i$

14.
$$z_1 = 1 + 5i$$
; $z_2 = 2 - 3i$

15.
$$z_1 = 1 - 4i$$
; $z_2 = 1 + 2i$

16.
$$z_1 = 5 + i$$
; $z_2 = 1 - 2i$

17.
$$z_1 = 3 + i$$
; $z_2 = 5 - 2i$

18.
$$z_1 = 1 - 5i$$
; $z_2 = 1 + 3i$

19.
$$z_1 = 5 - i$$
; $z_2 = 1 + 3i$

20.
$$z_1 = 1 + 3i$$
; $z_2 = -2 + 5i$

21.
$$z_1 = 3 + 4i$$
; $z_2 = -2 + i$

22.
$$z_1 = 5 - 2i$$
; $z_2 = -2 + i$

23.
$$z_1 = 7 - 2i$$
; $z_2 = 5 + 3i$

24.
$$z_1 = 7 - 3i$$
; $z_2 = -1 + 4i$
25. $z_1 = -2 + 3i$; $z_2 = 5 - 4i$

26.
$$z_1 = -3 + 2i$$
; $z_2 = 6 + 5i$

27.
$$z_1 = -1 + 7i$$
; $z_2 = 4 - 5i$

28.
$$z_1 = 4 + 5i$$
; $z_2 = 1 - 2i$

29.
$$z_1 = -1 + 3i$$
; $z_2 = 6 - 5i$

30.
$$z_1 = -3 - 2i$$
; $z_2 = 4 + 3i$

3. 2. 2. Задания для промежуточной аттестации по дисциплине Математика

Вопросы для подготовки к экзамену

- 1. Матрицы. Виды матриц (квадратная, прямоугольная, треугольная, диагональная, единичная, нулевая)
- 2. Сложение, умножение матриц. Умножение матрицы на число.
- 3. Определители 2-го, 3-го порядка. Способы их вычисления.
- 4. Свойства определителей.
- 5. Обратная матрица. Способы нахождения обратной матрицы.
- 6. Системы линейных уравнений. Правило Крамера.
- 7. Решение системы линейных уравнений с помощью обратной матрицы.
- 8. Метод Гаусса решения системы линейных уравнений.
- 9. Вектор. Линейные операции над векторами.
- 10. Скалярное произведение векторов.
- 11. Векторное произведение векторов.
- 12. Смешанное произведение векторов.

- 13. Различные виды уравнения прямой на плоскости.
- 14. Нормальный и направляющий вектор.
- 15. Взаимное расположение двух прямых. Условия параллельности и перпендикулярности прямых.
- 16. Кривые второго порядка.
- 17. Числовая последовательность. Предел числовой последовательности.
- 18. Предел функции.
- 19. Основные теоремы о пределах.
- 20. Замечательные пределы.
- 21. Непрерывность и точки разрыва функции.
- 22. Определение производной.
- 23. Правила дифференцирования.
- 24. Производная сложной функции.
- 25. Логарифмическое дифференцирование.
- 26. Производные и дифференциалы высших порядков.
- 27. Исследование функций с помощью производных.
- 28. Раскрытие неопределенностей. Правило Лопиталя.

Вопросы для подготовки к экзамену

- 1. Первообразная и неопределенный интеграл.
- 2. Правила интегрирования.
- 3. Методы вычисления неопределенного интеграла.
- 4. Определенный интеграл: определение, свойства, геометрический смысл.
- 5. Частные производные, полный дифференциал функции нескольких действительных переменных.
- 6. Производные сложных и неявных функций.
- 7. Уравнения касательной плоскости и нормали к поверхности.
- 8. Частные производные высших порядков. Дифференциал второго порядка функции 2-х переменных.
- 9. Экстремумы функции 2-х переменных.
- 10. Двойной интеграл и его свойства.
- 11. Двойной интеграл в полярной системе координат.
- 12. Понятие числового ряда. Сходящиеся и расходящиеся ряды.
- 13. Необходимый признак сходимости ряда. Свойства рядов.
- 14. Признаки сходимости знакоположительных рядов.
- 15. Знакочередующиеся ряды.
- 16. Функциональные ряды.
- 17. Степенные ряды. Разложение функций в степенные ряды.
- 18. Дифференциальные уравнения. Понятие общего и частного решений. Задача Коши.
- 19. Дифференциальные уравнения с разделяющимися переменными.
- 20. Однородные дифференциальные уравнения первого порядка.
- 21. Линейные дифференциальные уравнения первого порядка.
- 22. Метод Бернулли решения дифференциальных уравнений.
- 23. Дифференциальные уравнения высших порядков и методы их решения.

- 24. Понятие комплексного числа. Мнимая и действительная части, модуль, аргумент, радиус-вектор комплексного числа.
- 25. Алгебраическая форма комплексного числа. Действия в ней.
- 26. Тригонометрическая форма комплексного числа. Действия в ней.
- 27. Показательная форма комплексного числа. Действия в ней.
- 28. Перевод комплексного числа из одной формы в другую.

Задания для подготовки к экзамену

- 1. Даны вершины треугольника ABC: A (-2, 4), B (3, 1), C (10, 7). Найти: а) уравнение стороны АВ; б) уравнение высоты СН; *Omeem*: (AB): 3x + 5y - 14 = 0, (CH): 5x - 3y - 29 = 0
- 2. Записать уравнение прямой, проходящей через точку A(3, 1) перпендикулярно к прямой ВС, если В(2, 5), С(1, 0). *Ombem*: (l): x - 5y + 2 = 0
- 3. Найти площадь параллелограмма, построенного на векторах a = 2i + j + 2k u = b = 3i + 2j + 2k. Omeem: $3\kappa e.e d$
- 4. Даны две матрицы A и B. Найти: a) AB; б) BA:A = $\begin{vmatrix} 2 & 1 & 1 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{vmatrix}, B = \begin{vmatrix} 2 & 4 & -6 \\ 1 & -2 & 3 \end{vmatrix}.$

Omsem: a)
$$AB = \begin{pmatrix} 9 & 14 & -3 \\ 5 & 6 & 9 \\ 4 & 4 & 3 \end{pmatrix} \delta) BA = \begin{pmatrix} 18 & -3 & 9 \\ 6 & -2 & 0 \\ 1 & 3 & 2 \end{pmatrix}$$

- $Omsem: a) AB = \begin{pmatrix} 9 & 14 & -3 \\ 5 & 6 & 9 \\ 4 & 4 & 3 \end{pmatrix} \delta) BA = \begin{pmatrix} 18 & -3 & 9 \\ 6 & -2 & 0 \\ 1 & 3 & 2 \end{pmatrix}$ 5. Найти матрицу, обратную данной $A = \begin{pmatrix} 3 & 5 & -2 \\ 1 & -3 & 2 \\ 6 & 7 & -3 \end{pmatrix}$ $Omsem: A^{-1} = \begin{pmatrix} -0.5 & 0.1 & 0.4 \\ 1.5 & 0.3 & -0.8 \\ 2.5 & 0.9 & -1.4 \end{pmatrix}$
- 6. Даны две матрицы A и B: $A = \begin{pmatrix} 2 & 1 & 1 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 6 & 0 \\ 2 & 4 & -6 \\ 1 & -2 & 3 \end{pmatrix}.$ Найти: a) AB; б) A^{-1} Omsem: a) $\begin{pmatrix} 9 & 14 & -3 \\ 5 & 6 & 9 \\ 4 & 4 & 3 \end{pmatrix}$ б) $A^{-1} = \begin{pmatrix} 0.5 & 0.5 & -1 \\ 0.5 & -0.5 & 0 \\ -0.5 & -0.5 & 2 \end{pmatrix}$
- 7. Решить систему уравнений по формулам Крамера $\begin{cases} 2x + 3y + z = 1 \ \textit{Ответ}:a)(3;-2;1); \\ 3x + 2y + z = 6 \end{cases}$

8. Решить систему уравнений по формулам методом Гаусса

a)
$$\begin{cases} 2x + y + 3z = 7 \\ 2x + 3y + z = 1 \\ 3x + 2y + z = 6 \end{cases}$$

a)
$$\begin{cases} 2x + y + 3z = 7 \\ 2x + 3y + z = 1 \\ 3x + 2y + z = 6 \end{cases}$$
6)
$$\begin{cases} 2x - y + 2z = 3 \\ x + y + 2z = -4 \quad Omsem:a)(3;-2;1); \quad 6)(1;-3;-1) \\ 4x + y + 4z = -3 \end{cases}$$

9. Решить систему с помощью обратной матрицы (матричным методом):

$$\begin{cases} 2x - y + 2z = 3 \\ x + y + 2z = -4 \text{ Omsem}: (1;-3;-1) \\ 4x + y + 4z = -3 \end{cases}$$

10. Найти интегралы:

$$a) \int (x^4 x^{-3} x^{\frac{1}{2}}) dx,$$

Ombem:
$$\frac{2}{5}\sqrt{x^5}+C$$

$$e) \int \frac{x^5 x^{-3}}{x^{-2} x} dx$$

Ombem:
$$\frac{x^4}{4} + C$$

$$M$$
) $\int (5e^{x} + 3^{x} - x^{8}) dx$

e)
$$\int \frac{x^5 x^{-3}}{x^{-2} x} dx$$
 Omsem: $\frac{x^4}{4} + C$

M) $\int (5e^x + 3^x - x^8) dx$ Omsem: $5e^x + \frac{3^x}{\ln 3} - \frac{1}{9} x^9 + C$

11. Найти пределы:
a)
$$\lim_{x\to 0} \frac{4}{3x^2 + 2x}$$
 Ответ :∞

s)
$$\lim_{x \to 0} (x+4)^{-3x}$$
 Omsem:

6)
$$\lim_{x \to \infty} \left(\frac{x+4}{x+8} \right)^{-3x}$$
 Omsem: e^{12}
6) $\lim_{x \to \infty} \left(\frac{5x^4 - x^3 + 2x}{x^4} \right)$ Omsem: 5

e)
$$\lim_{x\to\infty} \frac{\sin 2x}{tg3x}$$
 Omsem: $\frac{2}{3}$

3)
$$\lim_{x\to\infty} (x^3 + 3x^2)$$
 Ombem: ∞

$$\pi \lim_{x \to \infty} \left(\frac{2x}{x^3 + 1} \right) Omsem : 0$$

$$u$$
) $\lim_{x\to\infty} \left(\frac{x-10}{x}\right)^{2x+1}$ Omsem : e^{-20}

$$\lim_{x \to 1} \frac{2x^2 - x - 1}{3x^2 - x - 2} \qquad omsem : \frac{3}{5}$$

12. Решить дифференциальные уравнения:

a)
$$x dx + y dy = 0$$
; Ombern: $y = \sqrt{c - x^2}$

a)
$$x dx + y dy = 0$$
; *Omsem*: $y = \sqrt{c - x^2}$
r) $y' - y = x$; *Omsem*: $y = \begin{pmatrix} c - x^2 \\ C - x \end{pmatrix}$

б)
$$dy = (x^2 - 1)dx$$
, если $y = 4$ при $x = 1$; Ответ: $y = 4\frac{2}{3}$

$$\exists y' + y \not = x = \cos^2 x;$$
 Ответ: $y = (Sinx + C)\cos x$

13. Выполнить действия над комплексными числами, заданными в алгебраической форме и результат изобразить геометрически:

a)
$$\frac{1+(-i)^{17}}{i^{23}}$$
 Omsem: $1+i$

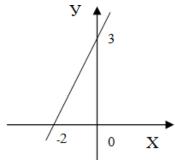
14. Дано:
$$Z_1 = 1 - \sqrt{3}i$$
, $Z_2 = 2 + 2i$; Вычислить: $\frac{z_1}{z_2}$; $z_1 = 5$ Ответ: $\frac{2}{2} \left(\cos \frac{7\pi}{12} - i \sin \frac{7\pi}{12}\right)$; $32 \left(\cos \frac{5\pi}{3} - i \sin \frac{7\pi}{3}\right)$

15. Произвести действие и результат представить в тригонометрической форме:

$$\underbrace{\frac{1+i}{1-i} - \frac{1-i}{1+i}}_{a) \ 1-i} \underbrace{Omsem: 2 \left(\frac{\pi}{\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}} \right)}_{2}$$

16. Найти производную функции

a)
$$y = \frac{3}{x} + 5\sqrt{x^2 - 4x^3} + \frac{2}{x^4}$$
, Omsem: $y' = -\frac{3}{x^2} + 5 - 12x^2 - \frac{8}{x^5}$
e) $y = \sqrt[5]{7x^2 - 3x + 5} - \frac{5}{(x - 1)^4}$ Omsem: $y' = \frac{14x - 3}{5\sqrt[5]{(7x^2 - 3x + 5)^4}} + \frac{20}{(x - 1)^5}$
 κ) $y = 4x^6 + \frac{5}{x} - \sqrt[3]{x^7} - \frac{7}{x^4}$ Omsem: $y' = 24x^5 - \frac{5}{x^2} - \frac{7}{3}\sqrt[3]{x^4} + \frac{28}{x^5}$


17. Найти производную функции, если *a*)
$$arcctg\ y = 4x + 5y$$
, *Ответ*:
$$y' = \left(\frac{3\ln x}{\cos^2 3x} + \frac{tg3x}{x}\right) \cdot x^{tg3x}$$

18. Найти производную функции ; $a) \ y = (\cos 2x)^{\sin x}$, Omeg m: $y' = \cos x \cdot \ln \cos 2x - 2\sin x \cdot tg 2x$

6)
$$y = \cos(x+y)$$
 Ombem: $y' = -\frac{\sin(x+y)}{1+\sin(x+y)}$

19. Найти скалярное произведение векторов a (4; -3; 1) и b (5; -2; -3) ρ 20. Найти координаты вектора a-b , если a=3i+2j-5k и a=-2i+3j+4k 21. Найти координаты вектора a+b , если a=3i+2j-5k и a=-2i+3j+4k

22. Написать уравнение прямой

- 23. Построить прямую $\frac{x}{3} + \frac{y}{-2} = 1$
- (5; -1) _{и имеющей} 24. Составить уравнение прямой, проходящей через точку угловой коэффициент k=3

Записать уравнение параболы с вершиной в начале координат, если ее фокус находится в точке F(3;0). *Ответ*: $y^2 = 12x$

- 25. Найти производную функции $y = \sin^6(4x^3 2)$.
- 26. Найти производную третьего порядка функции $y = 3x^4 + \cos 5x$.
- 27. Найти производную второго порядка функции $v = 6x^5 + e^{4x}$.
- 28. Найти производную второго порядка функции $y = 4x^4 + \sin 2x$
- 29. Продифференцировать функцию, заданную неявно

1.2.
$$v^2 - x = \cos y$$

1.12.
$$\sin y = 7x + 3y$$

1.12.
$$\sin y = 7x + 3y$$
 1.22. $x^3 + y^3 = 5x$

30. Логарифмическое дифференцирование

$$y = (\sin 3x)^{\cos 5x}$$

31. Дифференцирование функций заданных параметрически

$$\begin{cases} x = \cdot \cos \\ y = 3t^3 \end{cases}$$

32. Найти указанные пределы, используя правило Лопиталя

$$\lim_{x\to\infty}\frac{e^x}{x^5}$$

$$\lim_{x \to \infty} \frac{e^x}{x^5} \qquad \lim_{x \to 1} \frac{x^3 - 2x^2 - x + 2}{x^3 - 7x + 6}$$

33. Найти неопределенные интегралы методом непосредственного интегрирования

$$\int \left(5\cos x - 3x^2 + \frac{1}{x}\right) dx; \qquad \int \left(6\sin x + 4x^3 - \frac{1}{x}\right) dx.$$

34. Найти неопределенный интеграл методом интегрирования по частям:

$$\int (x-2)\sin x dx$$
.

- 35. Вычислить определенный интеграл: $\int_{0}^{2} (4x^{2} + x 3) dx$;
- 36. Решить задачу Коши: $y' = 3x^2 2x + 6$, y(2) = 19.
- 37.Построить комплексные числа $z_1 = 2-3i$, $z_2 = 1+2i$, а также им сопряженные и противоположные.
- 38.Выполнить действия над комплексными числами в тригонометрической форме, результат записать в тригонометрической, алгебраической и показательной форме

$$\frac{i-1}{1+i}$$

39.Записать комплексное число в тригонометрической и алгебраической форме $2e^{\pi i/6}$.

3.3. Критерии оценивания

- 1. Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения обучающимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.
- 2. Основными формами проверки знаний и умений обучающихся по математике являются письменная контрольная работа, самостоятельная работа, тестирование, устный опрос.
- 3. При оценке письменных и устных ответов преподаватель в первую очередь учитывает показанные обучающимися знания и умения. Оценка зависит также от наличия и характера погрешностей, допущенных обучающимися.

Среди погрешностей выделяются ошибки и недочеты. Погрешность считается ошибкой, если она свидетельствует о том, что обучающийся не овладел основными знаниями, умениями, указанными в программе.

К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, не считающихся в программе основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного обучающимся задания или способа его выполнения; неаккуратная запись; небрежное выполнение чертежа.

Граница между ошибками и недочетами является в некоторой степени условной. При одних обстоятельствах допущенная обучающимися погрешность может рассматриваться преподавателем как ошибка, в другое время и при других обстоятельствах — как недочет.

4. Задания для устного и письменного опроса обучающихся состоят из теоретических вопросов и задач.

Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.

Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.

- 5. Оценка ответа обучающегося при устном и письменном опросе проводится по пятибалльной системе, т. е. за ответ выставляется одна из отметок: 1 (плохо), 2 (неудовлетворительно), 3 (удовлетворительно), 4 (хорошо), 5 (отлично).
- 6. Преподаватель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им заданий.

Критерии ошибок

К г р у б ы м ошибкам относятся ошибки, которые обнаруживают незнание обучающимися формул, правил, основных свойств, теорем и неумение их применять; незнание приемов решения задач, рассматриваемых в учебниках, а также вычислительные ошибки, если они не являются опиской;

К н е г р у б ы м ошибкам относятся: потеря корня или сохранение в ответе постороннего корня; отбрасывание без объяснений одного из них и равнозначные им;

К н е д о ч е т а м относятся: нерациональное решение, описки, недостаточность или отсутствие пояснений, обоснований в решениях.

Оценка устных ответов

Ответ оценивается *отметкой «5»*, если обучающийся:

- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником,
- изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
 - правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
- продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при отработке умений и навыков;
- отвечал самостоятельно без наводящих вопросов преподавателя. Возможны одна две неточности при освещении второстепенных вопросов или в выкладках, которые обучающийся легко исправил по замечанию преподавателя.

Ответ оценивается **отметкой «4»**, если он удовлетворяет в основном требованиям на оценку **«5»**, но при этом имеет один из недостатков:

- в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;
- допущены один два недочета при освещении основного содержания ответа, исправленные по замечанию преподавателя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию преподавателя.

Отметка «3» ставится в следующих случаях:

• неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для

дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке обучающихся»);

- имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов преподавателя;
- обучающийся не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
- при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

- не раскрыто основное содержание учебного материала;
- обнаружено незнание или непонимание обучающимся большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов преподавателя.